Teorema de Euclides referido a un cateto
“En un triángulo rectángulo la medida de cada cateto es media proporcional geométrica entre las medidas de la hipotenusa y su proyección sobre ella.”
Demostración:
Si se tiene un triángulo ABC cualquiera, rectángulo en C, y se proyectan los catetos sobre la hipotenusa, se tiene la siguiente figura (dercha):
donde
DB = p (proyección del cateto a (CB) sobre la hipotenusa)
AD = q (proyección del cateto b (AC) sobre la hipotenusa)
c = p + q
Por semejanza (~) de triángulos, el ΔACB ~ ΔCDB (son semejantes)
Luego;
Que es lo mismo que:
De forma análoga se tiene queΔACB ~ ΔADC (a la derecha) ,
entonces
Que es lo mismo que:
Vistas las fórmulas a las que arribamos utilizando la media proporcional geométrica, podemos enunciar el primer Teorema de Euclides también de la siguiente forma:
“En un triangulo rectángulo, el cuadrado de un cateto es igual al producto de la hipotenusa por la proyección del mismo cateto sobre la hipotenusa”.
Por lo tanto,