martes, 10 de mayo de 2016

Teorema de Euclides referido a un cateto

“En un triángulo rectángulo la medida de cada cateto es media proporcional geométrica entre las medidas de la hipotenusa y su proyección sobre ella.”
Demostración:
x
Si se tiene un triángulo ABC cualquiera, rectángulo en C, y se proyectan los catetos sobre la hipotenusa, se tiene la siguiente figura (dercha):

donde
DB = p (proyección del cateto a (CB) sobre la hipotenusa)
AD = q (proyección del cateto b (AC) sobre la hipotenusa)
c = p + q

Por semejanza (~) de triángulos, el   ΔACB ~  ΔCDB (son semejantes)
x
Luego;
Euclidea_teoremas_001
Que es lo mismo que:
Euclides_teoremas_002

x
x
De forma análoga se tiene queΔACB  ~  ΔADC (a la derecha) ,
entonces
Euclides_teoremas_003
Que es lo mismo que:
Euclides_teorema_004

Vistas las fórmulas a las que arribamos utilizando la media proporcional geométrica, podemos enunciar el primer Teorema de Euclides también de la siguiente forma:
“En un triangulo rectángulo, el cuadrado de un cateto es igual al producto de la hipotenusa por la proyección del mismo cateto sobre la hipotenusa”.
Por lo tanto,
Euclides_teoremas_009

                                                                     haz click aqui para el video 

No hay comentarios:

Publicar un comentario